PERACID OXIDATION OF CYCLOPROPENONES¹⁸

J. K. Crandall^{1b} and W. W. Conover^{1C}

Department of Chemistry, Indiana University Bloomington, Indiana 47401 Contribution Wo. 18go

(Received in USA 21 December 1970; received in UK for publication 12 January 1971)

Recent reports describe peracid oxidation studies on cyclopropenes as a potential synthetic approach to an oxabicyclobutane derivative.² However, this heterocyclic system has not yet been obtained, apparently a result of its facile rearrangement to the isomeric conjugated carbonyl compound as indicated below. In the course of related work, we have examined the peracid oxidation of several cyclopropenones, a special class of electrondeficient cyclopropenes,³ and in the present paper we report upon the novel transformation to acetylenes thus promoted.

Reaction of di-t-butylcyclopropenone (la) with 5 equivalents of -chloroperbenzoic acid in CH₂Cl₂ for 2 days resulted in the formation of di-t-butylacetylene (2a); ketones $3a$, ha and 5a; and dione 6a in the ratio of 1:2:5:90:2. The intermediacy of oxabicyclobutanone $T_{\rm A}$ was initially considered since this species could conceivably yield oxirene 8a by thermal⁴ decarbonylation. A second route from Ta to 8a invokes the recently discovered "oxidative decarbonylation" which converts cyclopropanones to olefins with loss of the carbonyl group⁵ as $CO₂$. Further tranformations of $\&e$, outlined in Chart I, account nicely for the observed ketonic products as recently discussed.⁶ However, spontaneous decarbonylation of hypothetical intermediate $7a$ was contraindicated by the evolution of 88% of the theoretical amount of carbon dioxide during the course of the reaction. The oxidative pathway to the ketonic products via $\frac{\partial a}{\partial n}$ is not categorically ruled out, but strong evidence against the intervention of <u>7a</u> derives from its inability to rationalize the formation of di-<u>t</u>-butylacetylene <u>a</u> demonstrated precursor of the other products under epoxidation conditions. This transfor-

and a state

mation proceeds via oxirene $\frac{6a}{4}$ and subsequently generated intermediates $\frac{9a}{4}$ and $\frac{10a}{4}$ as out-</u> lined in Chart I. A more viable description of the oxidation of 1a invokes oxidative decarbonylation <u>of the cyclopropenone</u> as the initial phase of the reaction. Thus, additio of peracid to the carbonyl function of la gives adduct lla which either collapses directly to CO₂ and the acetylene or proceeds through unstable β -lactone <u>12a</u> which spontaneousl decarboxylates.7

Similar peracid oxidation of diphenylcyclopropenone (1b) gave diphenylacetylene (2b), benzophenone (13b) and benzil (6b) in the ratio 40:10:50. Oxidation of 2b under these conditions gave <u>6b</u> and <u>13b</u> in accord with the literature.⁸ These results fit into the same general pattern. Ketocarbene 9b apparently leads to benzophenone in this case, probably by peracid oxidation of its rearrangement product diphenylketene.^{8a}

Comparison of these results with a report⁹ describing the basic hydrogen peroxide oxidation of 1b prompted re-examination of the latter reaction which was reported to yield benzyl phenyl ketone (14) as the major product. Repetition of this reaction gave 2b, 13b and 6b in addition to 14 , more in line with the anticipated similarity of the two oxidation reactions. The ratio of $\underline{2b}: \underline{1b}: \underline{6b}: \underline{14}$ was 30:10:40:20. The observation of $\underline{14}$ only under the basic condi tions suggested an alternative route to 14 from that originally proposed;⁹ this entails base cleavage¹⁰ of 1b to give acid 15 which leads to 14 by epoxidation and subsequent decarboxylation of glycidic acid 16 thus generated.¹¹ In fact, 1b was smoothly transformed to 15 under the reaction conditions minus hydrogen peroxide and resubmission of 15 to the original conditions readily effected the $15\neg 14$ conversion.

In conclusion, the oxidative decarboxylation reaction noted heretofore only for cyclopropanones is now extended to cyclopropenones. Similar transformations can probably be anticipated for other three-membered ring carbonyl compounds.

- 1. (a) Supported in part by a research grant from the National Science Foundation. (b) Alfred P. Sloan Research Fellow 1968-70. (c) Eatiooal Science Foundation Trainee **1969-70.**
- 2. H. Prinzbach and V. Fisher, Helv. Chim. Acta, 50, 1669 (1967); J. Ciabattoni and P. J. Hacienski, <u>J. Amer. Chem</u>. Soc., 91, 6534 (1969); L. E. Friedrich and R. A. Cormier, <u>J</u>. <u>Org</u>. <u>Chem</u>., 35, 450 (1970
- **3.** A. Krebs, Angew. Chem. Intern. Ed. Engl., 4, 10 (1965); G. L. Closs, Adv. Alicyclic Ciabattoni and E. C. Nathan III, <u>J</u>. Amer. Chem. Soc., 91 ,
- 4. **P. A. Leermakers, G. F. Vesley, N. J. Turro and D. C. Neckers, <u>J</u>. Amer. Chem. Soc., 20, 7347 (1968).
86, 4213 (1964); J. K. Crandall and W. H. Machleder, <u>J</u>. <u>Amer</u>. Chem. Soc., 20, 7347 (1968).**
- 5. (a) J. E. Baldwin and J. H. I. Cardellia, Chem. Commun., 588 (1968). (b) J. K. Crandall, W. H. Machleder and S. A. Sojka, in preparation.
- 6. J. Ciabattoni, R. A. Campbell, C. A. Renner, P. W. Cancannon, <u>J. Amer. Chem</u>. Soc., 92. 3926 (1970).
- **7. Oxidative decarbonylation of tetramethylcyclopropanone has been shown not to go through** the corresponding **B-lactone.^{5b}**
- **8.** t a) J. K. Stille and D. D. Whitehurst, J. Amer. Chem. Soc_{12} (0, 4871 (1964). b) R. N. McDonald and P. A. Schwab, J. Amer. Chem. Soc., $\&0$, (1964).
- **9. S. Marmor and M. M. Thomas, <u>J</u>. Org. Chem., 32, 252 (1967).**
- 10. R. Breslow, T. Eicher, A. Krebs, R. A. Peterson and J. Posner, J. Amer. Chem. Soc., 87, 1320 (1965).
- 11. H. O. House, "Modern Synthetic Reactions," W. A. Benjamin Inc., New York, 1965, pp. 241-242.